Exergy of partially coherent thermal radiation
S. Wijewardane and
Yogi Goswami
Energy, 2012, vol. 42, issue 1, 497-502
Abstract:
Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field.
Keywords: Degree of coherence; Thermal radiation; Intensity matrix; Mutual intensity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212002101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:42:y:2012:i:1:p:497-502
DOI: 10.1016/j.energy.2012.03.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().