A novel CO2 cryogenic liquefaction and separation system
Gang Xu,
Le Li,
Yongping Yang,
Longhu Tian,
Tong Liu and
Kai Zhang
Energy, 2012, vol. 42, issue 1, 522-529
Abstract:
In this paper, the phase transition characteristics of CO2 and CO2/H2 mixture are analyzed, and ideas for improving the cryogenic separation method are drawn. On this basis, a novel CO2 cryogenic liquefaction and separation system is put forward. In the novel system, two-stage compression, two-stage refrigeration, two-stage separation, and sufficient recovery of cryogenic energy are adopted. Two-stage compression can increase the total pressure of gas mixture and liquefaction temperature of CO2. Two-stage refrigeration and two-stage separation can reduce the cryogenic energy demand and compression work in subsequent steps. Sufficient recovery of the cryogenic energy can reduce refrigeration duties. All these measures decrease the total energy consumption. As a result, under a CO2 recovery ratio of 90%, the total energy consumption is only 0.395 MJ/kgCO2 with over 99% CO2 purity. Further analysis indicates that the proposed CO2 cryogenic liquefaction and separation system is more suitable for separating liquid CO2 from gas mixtures with high CO2 concentration, and that the high initial pressure of the mixture presents better performance. The proposed system can serve as a new approach to CO2 removal with low energy penalty.
Keywords: CO2 liquefaction and separation; Cryogenic energy; Two-stage stages separation; Low energy penalty (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212001624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:42:y:2012:i:1:p:522-529
DOI: 10.1016/j.energy.2012.02.048
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().