EconPapers    
Economics at your fingertips  
 

Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes

Chao Fu and Truls Gundersen

Energy, 2012, vol. 44, issue 1, 60-68

Abstract: Oxy-combustion is a competitive technology to capture CO2. Current air separation technologies for high volume O2 production are based on cryogenic distillation. When a double-column distillation cycle is applied to produce O2 with a purity of 95 mol%, the oxygen production process is causing the largest power penalty (6.6% points) related to CO2 capture. The actual power consumption is around 4.7 times the theoretical minimum. This paper describes a comprehensive exergy analysis of an air separation unit for producing O2 with low purity (95 mol%) and low pressure (120 kPa). The air compression process and the distillation system cause the two largest exergy losses: 38.4% and 28.2% respectively. The power consumption in the air compressor can be reduced by 19% if the isentropic efficiency increases from 0.74 to 0.9. The total power consumption is reduced by 10% when dual reboilers are applied in the lower pressure column. The exergy losses in the condenser/reboiler exchanger is responsible for only 6.3% of the total losses, thus the power saving potential by developing new heat exchangers with smaller temperature differences is limited. The plant performance in air separation units is not expected to be significantly improved unless the flowsheet structures are improved.

Keywords: Air separation; Exergy analysis; Oxy-combustion; CO2 capture (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212000801
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:44:y:2012:i:1:p:60-68

DOI: 10.1016/j.energy.2012.01.065

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:60-68