Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials
Zhonghao Rao,
Shuangfeng Wang,
Feifei Peng,
Wei Zhang and
Yanlai Zhang
Energy, 2012, vol. 44, issue 1, 805-812
Abstract:
Phase change material (PCM), has been widely researched in many previous works, shows a good potential for thermal energy storage. The present paper investigated the mesoscopic morphologies and evolution mechanism of microencapsulated phase change materials (MEPCMs) using dissipative particle dynamics (DPD) simulations, which has rarely been performed in PCM related studies. The adequate coarse-grained and Flory-Huggins-type models were used to replace the molecular structures and calculate interaction parameters. The MEPCMs were fabricated with methyl trimethoxysilane (MTMS), 3-aminopropyl trimethoxysilane (APTMS) and n-eicosane in watery environment. The results showed that the simulated final configuration presented a cylindrical structure when the relative amount of water is less than the desired value. The size of the encapsulation decreased with the increasing of water concentration and increased with the increasing of core material concentration. The rational proportion of the components can be optimized or confirmed by the DPD simulations. The research indicates that the DPD simulation is an effective method for understanding the encapsulation process.
Keywords: Microencapsulated phase change materials; Dissipative particle dynamics; n-eicosane; Coarse-grained; Interaction parameters (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421200391X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:44:y:2012:i:1:p:805-812
DOI: 10.1016/j.energy.2012.05.012
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().