Entransy loss in thermodynamic processes and its application
Xuetao Cheng and
Xingang Liang
Energy, 2012, vol. 44, issue 1, 964-972
Abstract:
The entransy theory has been developed for heat transfer optimization. This paper extends it to optimize thermodynamic processes. The entransy balance equation of thermodynamic processes is introduced, with which the concept of entransy loss is developed. For the Carnot cycle and the irreversible thermodynamic processes where the working fluid is heated by the streams with prescribed inlet temperatures and specific capacity flow rates, we find that the maximum entransy loss leads to the maximum output work, which is the maximum principle of entransy loss in thermodynamic processes. However, the entropy generation cannot describe the change of the output work for the Carnot cycle. Therefore, the concept of entransy loss could describe the performance of thermodynamic processes. Then, the principle is used to optimize the thermodynamic processes of heat exchanger groups and the design of the irreversible Brayton cycle. For these problems, the operation parameters are optimized to get the maximum output work by calculating the maximum entransy loss when the entransy loss induced by dumping the used streams into the environment is considered. The analysis of the air conditioning system for room heating with heat–work conversion processes demonstrates the entransy loss has a direct relation with the input heat.
Keywords: Entransy loss; Thermodynamic process; Entropy generation; Optimization (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212003520
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:44:y:2012:i:1:p:964-972
DOI: 10.1016/j.energy.2012.04.054
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().