EconPapers    
Economics at your fingertips  
 

Effects of cleat performance on strength reduction of coal in CO2 sequestration

P.G. Ranjith and M.S.A. Perera

Energy, 2012, vol. 45, issue 1, 1069-1075

Abstract: The natural cleat system in coal is highly important in the CO2 sequestration process as injected CO2 first moves through the cleat system, which eventually changes the coal's permeability and strength. The main objective of this study is to investigate the effects of cleat density and direction on the strength reduction of coal with CO2 adsorption. A series of strength experiments was conducted on non-CO2-saturated and CO2-saturated (1, 2, 3 and 16 MPa) coal samples with two different cleat densities (low-rank lignite and high-rank bituminous) and two different cleat angles (around 20° and 70° to the loading directions). According to the experimental results, CO2 saturation, at up to 3 MPa saturation pressure, causes up to 4.5 times higher strength reduction in bituminous coal (43%) compared to lignite (9.6%). The compressive strength reduction percentage in coal shows a linearly increasing trend with CO2 saturation pressure (1–3 MPa), where the slope is significantly higher for bituminous coal (15.3) compared to lignite (3.2). When the cleat direction reduces from 70 to 20°, the CO2 adsorption (at 16 MPa) induced UCS strength reduction in bituminous coal reduces by around 20%. It is interesting to report that cleat density and direction do not exhibit a significant influence on elastic modulus reduction in coal compared to the strength reduction.

Keywords: Coal; CO2 adsorption; Strength reduction; Cleat properties (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212004380
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:45:y:2012:i:1:p:1069-1075

DOI: 10.1016/j.energy.2012.05.041

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:1069-1075