EconPapers    
Economics at your fingertips  
 

Use of Neural Networks for modeling and predicting boiler's operating performance

Miroslav Kljajić, Dušan Gvozdenac and Srdjan Vukmirović

Energy, 2012, vol. 45, issue 1, 304-311

Abstract: The need for high boiler operating performance requires the application of improved techniques for the rational use of energy. The analysis presented is guided by an effort to find possibilities for ways energy resources can be used wisely to secure a more efficient final energy supply. However, the biggest challenges are related to the variety and stochastic nature of influencing factors. The paper presents a method for modeling, assessing, and predicting the efficiency of boilers based on measured operating performance. The method utilizes a neural network approach to analyze and predict boiler efficiency and also to discover possibilities for enhancing efficiency. The analysis is based on energy surveys of 65 randomly selected boilers located at over 50 sites in the northern province of Serbia. These surveys included a representative range of industrial, public and commercial users of steam and hot water. The sample covered approximately 25% of all boilers in the province and yielded reliable and relevant results. By creating a database combined with soft computing assistance a wide range of possibilities are created for identifying and assessing factors of influence and making a critical evaluation of practices used on the supply side as a source of identified inefficiency.

Keywords: Boiler efficiency; Operating performance; Neural Nets; Modeling; Predicting (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212001818
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:45:y:2012:i:1:p:304-311

DOI: 10.1016/j.energy.2012.02.067

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:304-311