Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization
Laurence Tock and
François Maréchal
Energy, 2012, vol. 45, issue 1, 339-349
Abstract:
The thermochemical production of hydrogen from lignocellulosic biomass is systematically analyzed by developing thermo-environomic models combining thermodynamics with economic analysis, process integration techniques and optimization strategies for the conceptual process design. H2 is produced by biomass gasification and subsequent gas treatment, followed by H2 purification via CO2 removal. It is shown how the overall efficiency is improved by considering process integration and computing the optimal integration of combined heat and power production. In the conversion process, electricity can be generated in steam and gas turbine cycles using the combustion of the off-gases and recovering available process heat. Additional electricity can be produced by burning part of the H2-rich intermediate or of the purified H2 product. The trade-off between H2 and electricity co-production and H2 or electricity only generation is assessed with regard to energy, economic and environmental considerations. Based on multi-objective optimization, the most promising options for the polygeneration of hydrogen, power and heat are identified with regard to different process configurations. The best compromise between efficiency, H2 and/or electricity production cost and CO2 capture is identified. Biomass based H2 and electricity reveal to be a competitive alternative in a future sustainable energy system.
Keywords: Biomass; Hydrogen; Polygeneration; Process integration; Thermo-economic optimization; Life cycle assessment (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212000618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:45:y:2012:i:1:p:339-349
DOI: 10.1016/j.energy.2012.01.056
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().