Calculation of the flow field and NOx emissions of a gas turbine combustor by a coarse computational fluid dynamics model
Paolo Gobbato,
Massimo Masi,
Andrea Toffolo,
Andrea Lazzaretto and
Giordano Tanzini
Energy, 2012, vol. 45, issue 1, 445-455
Abstract:
Gas turbine performance is strongly dependent on the flow field inside the combustor. In the primary zone, the recirculation of hot products stabilises the flame and completes the fuel oxidation. In the dilution zone, the mixing process allows to obtain the suitable temperature profile at turbine inlet. This paper presents an experimental and computational analysis of both the isothermal and the reactive flow field inside a gas turbine combustor designed to be fed with natural gas and hydrogen. The study aims at evaluating the capability of a coarse grid CFD model, already validated in previous reactive calculations, in predicting the flow field and NOx emissions. An experimental campaign was performed on an isothermal flow test rig to investigate the combustion air splitting and the penetration of both primary and dilution air jets. These experimental data are used to validate the isothermal computations. The impact of combustion on the calculated flow field and on air splitting is investigated as well. Finally, NOx emission trend estimated by a post-processing technique is presented. The numerical NOx concentrations at the combustor discharge are compared with experimental measurements acquired during operation with different fuel burnt (natural gas or hydrogen) and different amount of steam injected.
Keywords: Coarse grid CFD analysis; Isothermal flow field; Air jet penetration measure; Combustion air splitting; NOx post-processing prediction (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211008073
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:45:y:2012:i:1:p:445-455
DOI: 10.1016/j.energy.2011.12.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().