Technological challenges for industrial development of hydrogen production based on methane cracking
A. Abánades,
C. Rubbia and
D. Salmieri
Energy, 2012, vol. 46, issue 1, 359-363
Abstract:
The world energy demand is foreseen to increase due to the improvements of the living standard in the developing countries and to the development of the global economy. The increase in sustainability of the energy supply must be considered as a must to avoid spoiling the natural resources, whose availability will be crucial for next generations. The CO2-free utilization of available energy sources is one of the ways to attain such objectives. Innovative solutions should be put into practice for the CO2-free exploitation of the huge fossil fuel resources already available. In this paper we explore the possibility to enlarge the fossil fuel availability without CO2 emissions by the analysis of the technological options to obtain Hydrogen as energy carrier from hydrocarbon decarburation, mainly methane. A brief analysis of those options and a discussion about their state-of-the-art will be done, to establish their potential and the R&D required to assess their practical implementation in a medium term.
Keywords: Methane cracking; Methane; Low carbon fossils (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212006275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:46:y:2012:i:1:p:359-363
DOI: 10.1016/j.energy.2012.08.015
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().