Hydrogen recovery from ethylene mixture with PD-AU composite membrane
Shin-Kun Ryi,
Chun-Boo Lee,
Sung-Wook Lee,
Kyung-Ran Hwang and
Jong-Soo Park
Energy, 2012, vol. 47, issue 1, 3-10
Abstract:
Hydrogen separation from the refinery off-gas of the ethylene decomposition was carried out with Pd-1wt.%Au alloy membranes deposited on a porous nickel support using the sputtering and polishing method. In order to verify the effect of ethylene on the membrane, hydrogen permeation tests were carried out with 5% ethylene mixtures at temperatures ranging from 573 to 673 K and pressure differences ranging from 500 to 1500 kPa. Hydrogen permeation tests, which were carried out with the membranes that had an effective area of 16.6 cm2, revealed that the ethylene mixture did not affect hydrogen permeation behavior when the feed streams were 3000 ml min−1 and the pressure difference was 500 kPa at 673 K. As the pressure difference and temperature increased and the feed flow rate decreased, hydrogen permeation flux became less than ideal, indicating that depletion was a major factor in the hydrogen permeation behavior. From the aspect of process design, the membrane with an effective area of 16.6 cm2 could enrich 5% ethylene of 2000 ml min−1 up to 76, 80, and 82% at 573 K, 623 K, and 673 K, respectively with a hydrogen recovery ratio of >96% at a pressure difference of 1500 kPa.
Keywords: Hydrogen separation; Membrane; Ethylene mixtures; Pd (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212004112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:47:y:2012:i:1:p:3-10
DOI: 10.1016/j.energy.2012.05.031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().