The potential for avoided emissions from photovoltaic electricity in the United States
Pei Zhai,
Peter Larsen,
Dev Millstein,
Surabi Menon and
Eric Masanet
Energy, 2012, vol. 47, issue 1, 443-450
Abstract:
This study evaluates avoided emissions potential of CO2, SO2 and NOx assuming a 10% penetration level of photovoltaics (PV) in ten selected U.S. states. We estimate avoided emissions using an hourly energy system simulation model, EnergyPLAN. Avoided emissions vary significantly across the country−mainly due to three state-specific factors: the existing resource mix of power plants (power grid fuel mix), the emission intensity of existing fossil fuel power plants and the PV capacity factor within each state. The avoided emissions per solar PV capacity (g/W)—for ten U.S. states—ranged from 670 to 1500 for CO2, 0.01–7.80 for SO2 and 0.25–2.40 for NOx. In general, avoided emissions are likely to be higher in locations with 1) higher share of coal plants; 2) higher emission of existing fossil fuel plants; and 3) higher PV capacity factor. To further illustrate the quantitative relationship between avoided emissions and the three state-specific factors, we conducted a sensitivity analysis. Finally, we estimated the change in avoided emissions in a coal-intensive state by varying the operational constraints of fossil-fuel power plants. At the 10% penetration level avoided emissions were not constrained by the ramp rate limitations, but the minimum capacity requirement significantly affected the avoided emission estimates.
Keywords: Photovoltaics; Emissions; Energy model; United States (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212006561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:47:y:2012:i:1:p:443-450
DOI: 10.1016/j.energy.2012.08.025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().