EconPapers    
Economics at your fingertips  
 

Mathematical modeling of sloped solar chimney power plants

Atit Koonsrisuk

Energy, 2012, vol. 47, issue 1, 582-589

Abstract: Sloped solar chimney system is a solar chimney power plant with a sloped collector. Practically, the sloped collector can function as a chimney, then the chimney height can be reduced and the construction cost would be reduced also. A mathematical model based on the continuity, momentum, energy, and state equations is developed for the sloped solar chimney system in this study. The flow details inside a collector are included in the model. The mathematical model was solved numerically using an iterative technique. Then, the numerical simulation was performed using the commercial CFD package. The consistency of the predictions of the mathematical model and that of the CFD package justifies the validity of the proposed mathematical model. A detailed study of the plant characteristics is done. Results show that using a near-unity ratio of the collector inlet flow area and the collector exit flow area might cause some problems. In addition, the assumption that the density differences in the collector and that in the chimney are approximately equal is investigated. The study shows that this assumption provides a large overprediction of the results. The effects of the chimney height and the collector area on the plant performance are also illustrated.

Keywords: Solar chimney power plant; Sloped solar chimney power plant; Mathematical model; Collector; Solar energy; Natural convection (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212007177
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:47:y:2012:i:1:p:582-589

DOI: 10.1016/j.energy.2012.09.039

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:582-589