EconPapers    
Economics at your fingertips  
 

Limiting biomass consumption for heating in 100% renewable energy systems

Brian Vad Mathiesen, Henrik Lund and David Connolly

Energy, 2012, vol. 48, issue 1, 160-168

Abstract: The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems with large amounts of fluctuating sources as it enables fuel efficient and low cost energy systems with thermal heat storages. DH increases the efficiency with the use of combined heat and power production (CHP), while reducing the biomass demand by enabling the use of other renewable resources such as large-scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher than the DH solutions.

Keywords: Renewable energy systems; Heating technologies; Biomass; Combined heat and power; District heating (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (64)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212006123
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:48:y:2012:i:1:p:160-168

DOI: 10.1016/j.energy.2012.07.063

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:160-168