Balancing wind energy and participating in electricity markets with a fuel cell population
Boris Heinz and
Johannes Henkel
Energy, 2012, vol. 48, issue 1, 188-195
Abstract:
In this paper an integrated fuel cell/household model is developed in order to assess the capability of fuel cells to fulfil different tasks in the energy market. The dynamic properties of two stationary combined heat and power (CHP) fuel cell systems were determined experimentally and serve as a basis for the development of the model. Based on this model, the possible contributions of fuel cell systems to a decentralized supply structure are investigated. The results show that if more than 24 households with a fuel cell are interconnected, the fuel cells are able to cover 99.6% of the entire household electricity demand. Additionally, German wind energy feed-in compensation is modelled. Here the results show that the influence on the wind power feed-in is limited because only for a small number of days with wind power production above median level the virtual fuel cell power plant can compensate the wind power feed-in by reducing its output. Thirdly, the potential use of excess electrical capacity from larger fuel cell populations sold at an energy exchange is examined. Here the simulation results show that trading can generate contribution margins of between 140 and 200 Euros per year. Consequently, fuel cells could be significant at the energy exchange, if fuel cell investment costs decreased in the future.
Keywords: Stationary fuel cell population; Household load profiles; Ramping capabilities; Wind feed-in; Dynamic simulation; Electricity prices (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212005324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:48:y:2012:i:1:p:188-195
DOI: 10.1016/j.energy.2012.07.002
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().