Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case
Javier Royo,
Fernando Sebastián,
Daniel García-Galindo,
Maider Gómez and
Maryori Díaz
Energy, 2012, vol. 48, issue 1, 255-267
Abstract:
The knowledge of the potentially achievable reduction of greenhouse gas (GHG) emissions by biomass co-firing is a powerful tool in supporting decision makers when it comes to undertaking energy planning. The main goal of this work was to develop a methodology by which significant biomass co-firing potentials and subsequent reduced GHG emissions, could be obtained at large territories. This methodology has been applied to Spain. It has been found that agricultural and forestry residual biomass feedstocks, available within 100 km of coal-fired power plants (CPP), currently total up to 75.8 PJth/yr. If energy crop feedstocks are included, this quantity increases up to 91.1 PJth/yr. However, the utilisation of biomass in CPPs is constrained by technical limitations. Taking into account these restrictions, biomass could be co-fired to generate up to 7.7% of electricity produced in CPPs (42.1 PJth/yr of biomass). A life cycle assessment has been performed to all the processes involved. The results indicate that up to 87 tCO2eq can be reduced by utilising 1 TJth of biomass replacing coal. The combination of these figures points out that biomass co-firing could contribute to mitigating 3.4 MtCO2eq in Spain annually. This value equates to almost 1% of its total GHG emissions.
Keywords: Biomass; Co-firing; Life cycle assessment (LCA); Greenhouse gases (GHG) (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212004975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:48:y:2012:i:1:p:255-267
DOI: 10.1016/j.energy.2012.06.046
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().