Economics at your fingertips  

Can a dysprosium shortage threaten green energy technologies?

Sander Hoenderdaal, Luis Tercero Espinoza, Frank Marscheider-Weidemann and Wina Graus

Energy, 2013, vol. 49, issue C, 344-355

Abstract: Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's strength at elevated temperatures. Therefore, the use of dysprosium doped permanent magnets is preferred in electric vehicles and direct-drive wind turbines. Based on four scenarios it could be shown that dysprosium demand will probably outstrip supply in the short term (up to 2020). Although new mines are being developed, it takes several years for them to become productive. For the long term it is expected that enough dysprosium oxide is available in the earth crust (which is economically feasible to mine with current dysprosium prices) to fulfil the projected demand of dysprosium up to 2050. Recycling of dysprosium can further secure dysprosium supply in the long term by reducing primary dysprosium use by 35% in 2050. Electric vehicles are likely to play a dominant role in future increases in dysprosium demand. Even with the limited market share in 2011, electric vehicles already contribute to 20% of dysprosium use.

Keywords: Dysprosium; Rare earth metals; Rare earth oxides; Permanent magnets; Direct-drive wind turbines; Electric vehicles (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:energy:v:49:y:2013:i:c:p:344-355