EconPapers    
Economics at your fingertips  
 

Optimal chiller loading in a district cooling system with thermal energy storage

Kody M. Powell, Wesley J. Cole, Udememfon F. Ekarika and Thomas F. Edgar

Energy, 2013, vol. 50, issue C, 445-453

Abstract: A novel technique for solving a dynamic optimal chiller loading problem is presented. This method reduces the complexity of the dynamic problem by considering all chillers to be a single, optimal chiller, which significantly reduces the number of decision variables. A static optimal chiller loading problem is solved as a sub-problem to give the optimal total power required at each time interval. The static optimization problem is solved by choosing the best solution from a series of convex quadratic programming problems, thus ensuring global optimality at each time interval. This hierarchical structure takes advantage of the extra degrees of freedom provided by thermal energy storage, while effectively breaking the problem down into a much simpler problem.

Keywords: Optimal chiller loading; Dynamic optimization; Thermal energy storage; District energy; Energy conservation; Dynamics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212008432
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:50:y:2013:i:c:p:445-453

DOI: 10.1016/j.energy.2012.10.058

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:445-453