EconPapers    
Economics at your fingertips  
 

Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid

Jiahui Zhu, Ming Qiu, Bin Wei, Hongjie Zhang, Xiaokang Lai and Weijia Yuan

Energy, 2013, vol. 51, issue C, 184-192

Abstract: High-temperature superconducting magnetic energy storage systems (HTS SMES) are an emerging technology with fast response and large power capacities which can address the challenges of growing power systems and ensure a reliable power supply. China Electric Power Research Institute (CEPRI) has developed a kJ-range, 20 kW SMES using two state of art HTS conductors, BSCCO and YBCO tapes. This SMES system is used to compensate a power drop and a fluctuation in order to damp low frequency oscillations to increase stability of a power system. This paper presents an optimized design of the SMES system to achieve a maximum energy capacity. A voltage source converter using IGBTs is built and can be used to control the power flow between the SMES system and external circuits. A control system using a digital signal processor (DSP) and micro-programmed control unit (MCU) is constructed. SVPWM pulse modulation is used as a control strategy. The whole system was experimentally tested for compensation of power fluctuation within milliseconds in a dynamic power system simulation laboratory. The result validates the design and control circuit, and more importantly, the application capability of SMES systems in a power grid.

Keywords: BSCCO; Dynamic simulation experiment; High-temperature superconducting magnetic energy storage system (HTS SMES); Power fluctuation compensation; SWOT; YBCO (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212007220
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:51:y:2013:i:c:p:184-192

DOI: 10.1016/j.energy.2012.09.044

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:184-192