EconPapers    
Economics at your fingertips  
 

A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities

Mohsen Torabi, Abdul Aziz and Kaili Zhang

Energy, 2013, vol. 51, issue C, 243-256

Abstract: This paper establishes the performance characteristics of convective–radiative longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with simultaneous variation of thermal conductivity, heat transfer coefficient and surface emissivity with temperature. The convection and radiation sink temperatures were assumed to be non-zero. The calculations are carried out using the differential transformation method (DTM). The accuracy of the DTM is confirmed by comparing its predictions with the results from an analytical solution and a well-tested numerical procedure. A new idea of volume adjusted fin heat transfer rate, fin effectiveness, and fin efficiency is introduced to compare the performances of trapezoidal and concave parabolic fins with the rectangular fin. Results presented illustrate the effects of thermal conductivity parameter, emissivity parameter, convection–conduction parameter, radiation–conduction parameter, and dimensionless convection and radiation sink temperatures on the performance of fins.

Keywords: Analytical solution; Longitudinal convective–radiative fins; Linear emissivity and thermal conductivity-temperature variations; Power law heat transfer coefficient (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213000224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:51:y:2013:i:c:p:243-256

DOI: 10.1016/j.energy.2012.11.052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:243-256