EconPapers    
Economics at your fingertips  
 

Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte

P. Tamilarasan and S. Ramaprabhu

Energy, 2013, vol. 51, issue C, 374-381

Abstract: Herein, we report, the fabrication of a mechanically stable, flexible graphene based all-solid-state supercapacitor with ionic liquid incorporated polyacrylonitrile (PAN/[BMIM][TFSI]) electrolyte for electric vehicles (EVs). The PAN/[BMIM][TFSI] electrolyte shows high ionic conductivity (2.42 mS/cm at 28 °C) with high thermal stability. Solid-like layered phase of ionic liquid is observed on the surface of pores of PAN membrane along with liquid phase which made it possible to hold 400 wt% of mobile phase. This phase formation is facilitated by the ionic interaction of CN moieties with the electrolyte ions. A supercapacitor device, comprised PAN/[BMIM][TFSI] electrolyte and graphene as electrode, is fabricated and the performance is demonstrated. Several parameters of the device, like, energy storage and discharge capacity, internal power dissipation, operating temperature, safe operation and mechanical stability, meet the requirements of future EVs. In addition, a good cyclic stability is observed even after 1000 cycles.

Keywords: Supercapacitor; Flexible; Graphene; Ionic liquid; Polyacrylonitrile (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212008985
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:51:y:2013:i:c:p:374-381

DOI: 10.1016/j.energy.2012.11.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:374-381