On the exergetic effectiveness of combined-cycle engines for high speed propulsion
Víctor Fernández-Villacé and
Guillermo Paniagua
Energy, 2013, vol. 51, issue C, 382-394
Abstract:
Air-breathing engines are utilized in the hypersonic regime through thermal integration of the fuel into the propulsive cycle, which improves the efficiency by recovering thermal energy from the freestream and the aeroshell. The classical efficiency figures based on First Principle analyses are inaccurate performance indicators of the resulting combined cycle. Instead, this paper deduced the engine thermal and airframe transfer effectivenesses based on thermodynamic availability, related to the overall losses of the thermally integrated vehicle for a given mission. The engine overall effectiveness, derived from the propulsive efficiency and the engine thermal effectiveness, was found to be a generalization of the Bréguet equation. The developed methodology was demonstrated in a combined cycle engine operating at flight speeds from Mach 2.5 to 5. In particular, the propulsive efficiency, thermal effectiveness, total loss and subcomponent losses were evaluated using the common framework of thermodynamic availability.
Keywords: Air-breathing engine; Combined cycle; Exergy; High speed propulsion; Numerical modeling; Variable cycle (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212009206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:51:y:2013:i:c:p:382-394
DOI: 10.1016/j.energy.2012.11.051
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().