EconPapers    
Economics at your fingertips  
 

Performance evaluation and experiment system for waste heat recovery of diesel engine

Gao Wenzhi, Zhai Junmeng, Li Guanghua, Bian Qiang and Feng Liming

Energy, 2013, vol. 55, issue C, 226-235

Abstract: In this paper, a waste heat recovery system is proposed where a high speed turbocharged diesel engine acts as the topper of a combined cycle with exhaust gases used for a bottoming Rankine cycle. The paper describes a mathematical model to evaluate the performance of Rankine cycle system with a reciprocating piston expander. The paper focuses on the performance evaluation and parameter selection of the heat exchanger and reciprocating piston expander that are suitable to waste heat recovery of ICE (internal combustion engine). The paper also describes the experimental setup and the preliminary results. The simulation results show that a proper intake pressure should be 4–5 MPa at its given mass flow rate of 0.015–0.021 kg/s depending on the waste heat recovery of a turbocharged diesel engine (80 kW/2590 rpm). The net power and net power rise rate at various ICE rotation speeds are calculated. The result shows that introducing heat recovery system can increase the engine power output by 12%, when diesel engine operates at 80 kW/2590 rpm. The preliminary experimental results indirectly prove the simulation model by two negative work loops in the P–V curve, under a low intake pressure and steam flow rate condition.

Keywords: Diesel engine; Waste heat recovery; Reciprocating piston expander (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002703
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:226-235

DOI: 10.1016/j.energy.2013.03.073

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:226-235