EconPapers    
Economics at your fingertips  
 

Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine

S. Jaichandar and K. Annamalai

Energy, 2013, vol. 55, issue C, 330-339

Abstract: Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, rapid and perfect air-fuel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by selecting the best injection parameters and better design of the combustion chamber. Experiments were performed using a DI (direct injection) diesel engine equipped with a conventional jerk type injection system and pistons having HCC (hemispherical combustion chamber) and TRCC (toroidal re-entrant combustion chamber) geometries. The combined effect of varying, injection pressure and combustion chamber geometries, on the combustion, performance and exhaust emissions, using a blend of 20% POME (pongamia oil methyl ester) by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for TRCC operated at higher injection pressure. Substantial improvements in reduction of emissions levels were also observed for TRCC operated at higher injection pressure. However improved combustion, due to better air motion inside the cylinder and high pressure injection, increased the oxides of nitrogen (NOx). Increasing injection pressure decreased ignition delay, and increased peak in-cylinder pressure and maximum heat release rate.

Keywords: Biodiesel; Diesel engine; Combustion chamber; Injection pressure; Performance; Emissions (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213003216
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:330-339

DOI: 10.1016/j.energy.2013.04.019

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:330-339