Theoretical modelling and experimental investigation of a thermal energy storage refrigerator
A.C. Marques,
G.F. Davies,
J.A. Evans,
G.G. Maidment and
I.D. Wood
Energy, 2013, vol. 55, issue C, 457-465
Abstract:
Numerical simulations using the computational fluid dynamics (CFD) software ANSYS Fluent were undertaken to characterize the airflow and temperature distribution in a natural convection thermal energy storage refrigerator. The model compared the household refrigerator temperature stability with different phase change materials (PCM) incorporated into the storage compartment. Scenarios investigated included the PCM orientation (vertical or horizontal), PCM temperature (use of water or eutectics) and compartment designs (conventional or drawer type appliance). The results suggested that a horizontal PCM configuration produces lower compartment temperatures than a vertical configuration. The temperature distribution with a horizontal PCM was tested experimentally and the results were in agreement with the CFD predictions. Both the simulation and the experimental results suggest that a eutectic with a phase change temperature below 0 °C must be employed to maintain the compartment temperature within acceptable limits. The model indicated that combining horizontal and vertical PCMs in a full height compartment or dividing the same compartment into two drawers with a horizontal PCM configuration for each drawer are feasible design options for the household thermal storage refrigerator.
Keywords: Household refrigerator; Phase change material; Energy storage; Temperature distribution; CFD (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002880
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:457-465
DOI: 10.1016/j.energy.2013.03.091
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().