Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters
Roman Hackl and
Simon Harvey
Energy, 2013, vol. 55, issue C, 5-14
Abstract:
Process cooling below ambient temperature is an energy demanding part of many chemical production processes. Compression refrigeration systems operating at very low temperatures consume a lot of high quality utility such as electricity or high pressure steam to drive the compressor units. In industrial process clusters with several processes operating at low temperatures, it is important to investigate opportunities for exchange of low-temperature energy between processes. This paper demonstrates how total site analysis and exergy analysis can be applied to target for shaft power and related hot utility savings for processes and utility systems operating below ambient temperature. Shaft power targeting by optimizing refrigerant use is conducted. In addition the methodology is extended for shaft power targeting in connection with site-wide heat recovery from cold process streams to generate sub-ambient utility.
Keywords: Process integration; Pinch analysis; Exergy analysis; Total site analysis; Industrial refrigeration systems (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421300217X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:5-14
DOI: 10.1016/j.energy.2013.03.029
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().