Modeling and optimization of biodiesel engine performance using advanced machine learning methods
Ka In Wong,
Pak Kin Wong,
Chun Shun Cheung and
Chi Man Vong
Energy, 2013, vol. 55, issue C, 519-528
Abstract:
This study aims to determine optimal biodiesel ratio that can achieve the goals of fewer emissions, reasonable fuel economy and wide engine operating range. Different advanced machine learning techniques, namely ELM (extreme learning machine), LS-SVM (least-squares support vector machine) and RBFNN (radial-basis function neural network), are used to create engine models based on experimental data. Logarithmic transformation of dependent variables is used to alleviate the problems of data scarcity and data exponentiality simultaneously. Based on the engine models, two optimization methods, namely SA (simulated annealing) and PSO (particle swarm optimization), are employed and a flexible objective function is designed to determine the optimal biodiesel ratio subject to various user-defined constraints. A case study is presented to verify the modeling and optimization framework. Moreover, two comparisons are conducted, where one is among the modeling techniques and the other is among the optimization techniques. Experimental results show that, in terms of the model accuracy and training time, ELM with the logarithmic transformation is better than LS-SVM and RBFNN with/without the logarithmic transformation. The results also show that PSO outperforms SA in terms of fitness and standard deviation, with an acceptable computational time.
Keywords: Biodiesel; Engine performance; Engine modeling; Engine optimization; Machine learning (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:519-528
DOI: 10.1016/j.energy.2013.03.057
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().