Kinetic characteristics of pulverized coal combustion in the two-phase flow
Zhengang Li,
Zhancheng Guo,
Xuzhong Gong and
Huiqing Tang
Energy, 2013, vol. 55, issue C, 585-593
Abstract:
The kinetic characteristics of pulverized coal combustion in the two-phase flow were studied using the micro fluidized bed kinetic analyzer (MFBKA) so as to get closer to the actual working condition. On the basis of the performance of CO and CO2 emissions, the effect of various operating parameters, such as reaction temperature, superficial gas velocity, coal particle size, oxygen concentration and coal properties, on the combustion rate was investigated. The yield ratio of CO to CO2 remained 1:1 until the reaction temperature exceeding 850 °C and then decreased gradually, indicating that the combustion mechanism changed at such temperature. The increase of superficial gas velocity and oxygen concentration and the reduction of coal particle size had positive effects on promoting the combustion process, but their contributions became feeble as the superficial gas velocity and the oxygen concentration were respectively greater than 0.10 m/s and 50vol%, and the coal particle size was smaller than 74 μm. The relations of reaction rate constant with various operating parameters were established. The kinetic parameters of pulverized coal combustion determined by MFBKA presented the same changing tendency as the results of thermogravimetric analysis (TGA), but the former apparent activation energy is relatively lower because of its optimized kinetic conditions.
Keywords: Two-phase flow; Micro fluidized bed; Pulverized coal; Combustion; Kinetics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213003393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:585-593
DOI: 10.1016/j.energy.2013.04.028
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().