EconPapers    
Economics at your fingertips  
 

Performance study of solar air heater having v-down discrete ribs on absorber plate

Rajendra Karwa and Girish Chitoshiya

Energy, 2013, vol. 55, issue C, 939-955

Abstract: The paper presents results of an experimental study of thermo-hydraulic performance of a solar air heater with 60° v-down discrete rib roughness on the airflow side of the absorber plate along with that for a smooth duct air heater. The enhancement in the thermal efficiency due to the roughness on the absorber plate is found to be 12.5–20% depending on the airflow rate; higher enhancement is at the lower flow rate. The experimental data have been generated and utilized to validate a mathematical model, which can be utilized for design and prediction of performance of both smooth and roughened air heaters under different operating conditions. The results of a detailed thermo-hydraulic performance study of solar air heater with v-down discrete rib roughness using the mathematical model are also presented along with the effect of variation of various parameters on the performance.

Keywords: Smooth and roughened duct solar air heater (collector); V-down discrete rib roughness; Thermal efficiency; Effective efficiency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002648
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:939-955

DOI: 10.1016/j.energy.2013.03.068

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:939-955