Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants
Young Sik Kim,
Sung Ku Park,
Jong Jun Lee,
Do Won Kang and
Tong Seop Kim
Energy, 2013, vol. 55, issue C, 977-986
Abstract:
In an IGCC (integrated gasification combined cycle) plant, the operating environment of the gas turbine (GT) deviates from the design conditions due to its integration with both the gasifier and the air separation unit (ASU). In particular, a trial to design the entire system with low GT–ASU integration would cause a decrease in the compressor surge margin and the turbine blade overheating. In this study, modification of the turbine and compressor to avoid a decrease in the surge margin and overheating was simulated, and the result was compared with the case without modification. The entire IGCC plant was modeled and the full off-design operation of the gas turbine was simulated. Under-firing and a decrease in dilution nitrogen can mitigate the two problems without component modification but inevitably cause a considerable performance penalty in the low integration degree regime. Both turbine modification (annulus area increase) and compressor modification (increase in the surge pressure ratio) enabled a continuous increase in power and efficiency with decreasing integration degree. In the very low integration degree regime, the power benefits of the two modifications were similar and considerable. A sensible power boost can be achieved if the turbine coolant modulation can be adopted instead of under-firing in modification strategies.
Keywords: Integrated gasification combined cycle; Gas turbine; Integration degree; Compressor surge; Turbine blade overheating; Modification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:55:y:2013:i:c:p:977-986
DOI: 10.1016/j.energy.2013.03.041
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().