A novel optimization approach of improving energy recovery in retrofitting heat exchanger network with exchanger details
Ming Pan,
Robin Smith and
Igor Bulatov
Energy, 2013, vol. 57, issue C, 188-200
Abstract:
Improving energy recovery with retrofitting heat exchanger network has been widely studied in academic and industrial communities. Distinct from most of existing works on HEN retrofit neglecting exchanger geometry, this paper presents a novel optimization method for dealing with the main exchanger geometry details in HEN retrofit problems. The addressed details of shell and tube exchangers include tube passes, shell passes, heat transfer intensification, logarithmic mean temperature difference (LMTD), and LMTD correction factor (FT), which are systematically identified under given objective function and topological constraints in the existing heat recovery systems. Based on the recent works proposed by Pan et al. [1] on HEN retrofit scenarios addressing network topology modification, an efficient optimization framework, consisting of two optimization stages with the implementation of MILP-based iterative method [2], has been developed to deal with the computational difficulties associated with the nonlinearity of LMTD and FT. Case study from literature examples are carried out to demonstrate the validity and soundness of the proposed approach, showing that the new proposed approach is able to provide realistic and practical solutions for debottlenecking of HEN with systematic consideration of exchanger details.
Keywords: Heat exchanger network (HEN); Retrofit; Energy recovery; Heat transfer intensification; Exchanger details (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212008365
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:57:y:2013:i:c:p:188-200
DOI: 10.1016/j.energy.2012.10.056
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().