EconPapers    
Economics at your fingertips  
 

An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system

Amiya K. Jana and Debadrita Maiti

Energy, 2013, vol. 57, issue C, 527-534

Abstract: Batch distillation is an irreversible process and consumes many times the theoretical minimum energy requirement. The present work focuses on the development of an internally heat integrated batch distillation with a jacketed still (IHIBDJS) aiming to reduce the degree of irreversibility towards zero. The IHIBDJS scheme consists of a rectifying tower equipped with an overhead condenser and a still pot or reboiler that surrounds the tower concentrically. For improving the energy efficiency by the reduction of external energy input, the rectifier is operated at an elevated pressure so that a thermal driving force should exist between the rectifying tower and the concentric still. For this purpose, an isentropic compression system is mounted in the reboiled vapor line. Aiming to reduce further the degree of process irreversibility, we propose an additional thermal arrangement into the IHIBDJS configuration that couples the overhead vapor with the reboiler liquid, thereby reducing further the external heat consumption. It is investigated for a reactive batch distillation column that the effective use of internal heat sources would make the heat integrated column an independent scheme of external heat source.

Keywords: Heat integration; Batch distillation; Jacketed still; Overhead vapor coupling; Energy savings; Economics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213003988
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:57:y:2013:i:c:p:527-534

DOI: 10.1016/j.energy.2013.05.014

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:527-534