EconPapers    
Economics at your fingertips  
 

Thermal pulse energy harvesting

Ian Salmon McKay and Evelyn N. Wang

Energy, 2013, vol. 57, issue C, 632-640

Abstract: This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.

Keywords: Energy harvesting; Thermal energy conversion; Thermal pulse; Radioisotope power system (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213004635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:57:y:2013:i:c:p:632-640

DOI: 10.1016/j.energy.2013.05.045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:632-640