EconPapers    
Economics at your fingertips  
 

Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery

Sipeng Zhu, Kangyao Deng and Shuan Qu

Energy, 2013, vol. 58, issue C, 448-457

Abstract: In this paper, a theoretical study on the thermodynamic processes of a bottoming Rankine cycle for engine waste heat recovery is conducted from the viewpoints of energy balance and exergy balance. A theoretical formula and an exergy distribution map for qualitative analyses of the main operating parameters are presented under simplified conditions when exhaust gas is selected as the only heat source. Five typical working fluids, which are always selected by manufacturers for different types of engines, are compared under various operating conditions in Matlab software. The results show that working fluid properties, evaporating pressure and superheating temperature are the main factors influencing the system design and performances. The global recovery efficiency does not exceed 0.14 under typical operating conditions. Ethanol and R113 show better thermodynamic performances in the whole exhaust gas temperature range. In addition, the optimal evaporating pressure usually does not exist in engine exhaust heat recovery, and the distributions of exergy destruction are varied with working fluid categories and system design constraints.

Keywords: Rankine cycle; Engine; Waste heat recovery; Working fluid property; Evaporating pressure (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421300529X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:58:y:2013:i:c:p:448-457

DOI: 10.1016/j.energy.2013.06.031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:448-457