Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers
Wen-Long Cheng and
Xu-Dong Yuan
Energy, 2013, vol. 59, issue C, 265-276
Abstract:
The dynamic model of a novel household refrigerator with SSPCM (shape-stabilized phase change material) heat storage condenser presented in this paper were established and agreed well with the experiment. By simulation, the coefficient of performance is increased about 19% by a continuous heat transfer of condenser due to the latent heat storage of SSPCM, however the energy saving is 12% and offset about 7% by the heat leakage increase because of the SSPCM inside the insulation layer. The effects of ambient temperature, freezer temperature and phase change temperature on the energy saving are analyzed to provide theoretical basis for the optimization design of the refrigerator with SSPCM. It can be concluded that the ambient temperature increasing and the freezer temperature decreasing can increase the energy saving effect, the second phase change temperature region with the peak temperature about 49 °C of SSPCM results in the minimum energy consumption of the novel refrigerator.
Keywords: Household refrigerator; Heat storage condenser; Shape-stabilized phase change material; Energy saving; Numerical simulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213005446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:59:y:2013:i:c:p:265-276
DOI: 10.1016/j.energy.2013.06.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().