The reserve trading model considering V2G Reverse
Shi Lefeng,
Zhang Qian and
Pu Yongjian
Energy, 2013, vol. 59, issue C, 50-55
Abstract:
With the popularity of plug-in electric vehicles, V2G reserve will inevitably impact on the traditional reserve trading model. By analyzing the differences and similarities between V2G reserve and generation side reserve in terms of reliability and economy, this paper pointed out the trading features of the reserve market including V2G reserve, and analyzed the interactive relationships of the relevant reserve need, reserve supply and reserve price under the requirement of certain reliability. To achieve the minimal total cost of the purchase cost and risk cost of reserve trade, and taking reliability electricity price as measurement index, a new reserve trading model of electric companies concerning the V2G reserve was proposed. Furthermore, a specific solution method was put forward according to the sequential bidding. This new model, taking default probability of plug-in electric vehicle users and accident probability of generation side reserve into consideration, realized the optimal scheduling of the V2G reserve and generation side reserve, which provide a new way for future reserve trading model considering V2G reverse. Finally, the effectiveness and validity of the proposed trading model were illustrated by a numerical example.
Keywords: V2G reserve; Generation side reserve; Reliability; Trading model; Reserve price (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421300635X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:59:y:2013:i:c:p:50-55
DOI: 10.1016/j.energy.2013.07.030
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().