Design of high-efficient and universally applicable blades of tidal stream turbine
Baigong Wu,
Xueming Zhang,
Jianmei Chen,
Mingqi Xu,
Shuangxin Li and
Guangzhe Li
Energy, 2013, vol. 60, issue C, 187-194
Abstract:
The tidal stream turbine is the major device we use to obtain the kinetic energy of tides. The blades of the rotor are one of the essential parts which can convert tidal current energy into mechanical energy. Now most horizontal-axis turbine blade design theories are mostly based on the BEM (blade element momentum) theory and Glauert theory (e.g., WTperf, GHbladed). This paper comes up with a new method – Schmitz design. This method is easier, but they have the same physical philosophy. Also we change the chord length distribution to adapt the low stream velocity. This new hydrofoil increases the startup torque, improves the total performance of the turbine and decreases the thrust coefficient. At the same time we consider the incipient cavitations, tip loss and airfoil loss. We compare the design results with the experimental data in the literature. This method can satisfy the requirement of the design.
Keywords: The tidal stream turbine; Schmitz theory; Startup torque; Cavitations; Stall (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213006671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:60:y:2013:i:c:p:187-194
DOI: 10.1016/j.energy.2013.07.061
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().