Engineering challenges of ocean liming
P. Renforth,
B.G. Jenkins and
T. Kruger
Energy, 2013, vol. 60, issue C, 442-452
Abstract:
The relationship between the level of atmospheric CO2 (carbon dioxide) and the impacts of climate change is uncertain, but a safe concentration may be surpassed this century. Therefore, it is necessary to develop technologies that can accelerate CO2 removal from the atmosphere. This paper explores the engineering challenges of a technology that manipulates the carbonate system in seawater by the addition of calcium oxide powder (CaO; lime), resulting in a net sequestration of atmospheric CO2 into the ocean (ocean liming; OL). Every tonne of CO2 sequestered requires between 1.4 and 1.7 t of limestone to be crushed, calcined, and distributed. Approximately 1 t of CO2 would be created from this activity, of which >80% is a high purity gas (pCO2 > 98%) amenable to geological storage. It is estimated that the thermal and electrical energy requirements for OL would be 0.6–5.6 and 0.1–1.2 GJ tCO2−1 captured respectively. A preliminary economic assessment suggests that OL could cost approximately US$72–159 t−1 of CO2. The additional CO2 burden of OL makes it a poor alternative to point source mitigation. However, it may provide a means to mitigate some diffuse emissions and reduce atmospheric concentrations.
Keywords: Carbon dioxide removal; Geoengineering; Lime; Ocean acidification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213006816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:60:y:2013:i:c:p:442-452
DOI: 10.1016/j.energy.2013.08.006
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().