Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility
Abhay Koppar and
Pratap Pullammanappallil
Energy, 2013, vol. 60, issue C, 62-68
Abstract:
A citrus processing facility produces significant quantities of both peel waste and wastewater. A leach – bed batch anaerobic digester was operated successfully at thermophilic (55 °C) temperature for biogasification of citrus peel waste. The retention time in the digester was 25 days. The citrus processing wastewater was digested in a thermophilic DSFF (down flow stationary fixed film) anaerobic reactor fed continuously and operated for 76 days. At an average organic loading rate of 0.51 kg sCOD m−3 d−1 the hydraulic retention time was 16 days. No long term toxicity issues due to limonene were observed during digestion of both citrus waste feedstocks. Biogasification yielded, 0.116 m3 methane at STP kg−1 peel waste received and 2.1 m3 at STP m−3 wastewater received. An energy analysis showed that in a citrus processing plant handling 600 tons per day of fruits, the biogas produced from the waste streams is more than sufficient to meet all the electricity and fuel demands. Excess electricity generated from biogas may be sold generating estimated revenues of more than a $1 million annually (at electricity sale price of $0.04/kWhe).
Keywords: Anaerobic digestion; Orange peel waste; Citrus wastewater; Thermophilic; Biogas (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213006828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:60:y:2013:i:c:p:62-68
DOI: 10.1016/j.energy.2013.08.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().