Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system
H.Z. Hassan and
A.A. Mohamad
Energy, 2013, vol. 61, issue C, 167-178
Abstract:
Due to the intermittent nature of the solar radiation, the day-long continuous production of cold is a challenge for solar-driven adsorption cooling systems. In the present study, a developed solar-powered adsorption cooling system is introduced. The proposed system is able to produce cold continuously along the 24-h of the day. The theoretical thermodynamic operating cycle of the system is based on adsorption at constant temperature. Both the cooling system operating procedure as well as the theoretical thermodynamic cycle are described and explained. Moreover, a steady state differential thermodynamic analysis is performed for all components and processes of the introduced system. The analysis is based on the energy conservation principle and the equilibrium dynamics of the adsorption and desorption processes. The Dubinin–Astakhov adsorption equilibrium equation is used in this analysis. Furthermore, the thermodynamic properties of the refrigerant are calculated from its equation of state. The case studied represents a water chiller which uses activated carbon–methanol as the working pair. The chiller is found to produce a daily mass of 2.63 kg cold water at 0 °C from water at 25 °C per kg of adsorbent. Moreover, the proposed system attains a cooling coefficient of performance of 0.66.
Keywords: Refrigeration; Adsorption; Solar energy; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421300755X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:61:y:2013:i:c:p:167-178
DOI: 10.1016/j.energy.2013.09.004
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().