Comparative study of photovoltaic and thermal solar systems with different storage capacities: Performance evaluation and economic analysis
Sujala Bhattarai,
Gopi Krishna Kafle,
Seung-Hee Euh,
Jae-Heun Oh and
Dae Hyun Kim
Energy, 2013, vol. 61, issue C, 272-282
Abstract:
The thermal performance of the PV/T (photovoltaic thermal) system and conventional collector is affected by water storage capacity. There are limited studies which show the effects of the storage capacity on the performance of different solar systems. This paper measures and analyzes the performance of a photovoltaic thermal system, conventional collector, and PV (photovoltaic) plate at different water storage capacities (25, 50, 75, 100, and 125 kg/m²). The cost payback period of the solar systems was calculated with the electricity price of South Korea (0.049 US$/kWh) and for the country with the highest electricity price of 0.364 US$/kWh (Australia). The thermal efficiency of the PV/T system and conventional collector increased sharply with increasing storage capacity. The cost payback period of the PV/T system and conventional collector reduced considerably with increasing storage capacity. Similarly, the cost payback period of PV/T system and PV plate reduced remarkably when electricity price increased from 0.049 to 0.364 US$/kWh. The selection of the proper storage capacity could play a vital role for the performance enhancement and cost reduction in the PV/T system and the conventional collector.
Keywords: PV/T system; Conventional collector; PV module; Performance evaluation; Economic analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213007585
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:61:y:2013:i:c:p:272-282
DOI: 10.1016/j.energy.2013.09.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().