Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon
Nor Adilla Rashidi,
Suzana Yusup and
Bassim H. Hameed
Energy, 2013, vol. 61, issue C, 440-446
Abstract:
CO2 (Carbon dioxide) emissions are one of the greenhouse gases that cause global warming. The power generation industry is one of the main emitters of CO2, and the emissions are expected to increase in the coming years as there seems to be no abatement in the consumption of fossil fuels for the production of electricity. Thus, there is a need for CO2 adsorption technologies to mitigate the emissions. However, there are several disadvantages associated with the current adsorption technologies. One of the issues is corrosion and the need for specialized equipment. Therefore, alternative and more sustainable materials are sought after to improve the viability of the adsorption technology. In this study, several types of agricultural wastes were used as activated carbon precursors for CO2 adsorption process in a TGA (thermogravimetric analyser). The adsorption was also modelled through a pseudo-first order and second order model, Elovich's kinetic model, and an intra-particle diffusion model. From the correlation coefficient, it was found that pseudo-second order model was well-fitted with the kinetic data. In addition, activation energy below than 42 kJ/mol confirmed that the physisorption process occurred.
Keywords: Activated carbon; Adsorption; CO2 capture (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213007391
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:61:y:2013:i:c:p:440-446
DOI: 10.1016/j.energy.2013.08.050
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().