Environmental benchmarking of wind farms according to their operational performance
Diego Iribarren,
Mario Martín-Gamboa and
Javier Dufour
Energy, 2013, vol. 61, issue C, 589-597
Abstract:
The combined use of Life Cycle Assessment and Data Envelopment Analysis (LCA + DEA methodology) facilitates the identification and quantification of the environmental consequences of operational inefficiencies when assessing multiple similar facilities. In this work, the LCA + DEA methodology was used to benchmark the operational and environmental performance of a sample of 25 wind farms located in Spain. Only four of the evaluated farms were found to be comparatively efficient. Input consumption levels that would turn inefficient wind farms into efficient facilities (i.e., target wind farms) were benchmarked. The environmental impacts linked to these target facilities were also benchmarked. Average reductions of 19–45% in the consumption of selected inputs were calculated, which resulted in average impact reductions of 18–29% for a selection of environmental impact categories. The potential economic savings associated with the target wind farms were also estimated. Finally, potential relationships between efficiency and annual power generation, location or average wind speed were discussed.
Keywords: Data envelopment analysis; Efficiency; Environmental impact; Life cycle assessment; Wind power (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213007561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:61:y:2013:i:c:p:589-597
DOI: 10.1016/j.energy.2013.09.005
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().