EconPapers    
Economics at your fingertips  
 

Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

L. Álvarez, C. Yin, J. Riaza, C. Pevida, J.J. Pis and F. Rubiera

Energy, 2013, vol. 62, issue C, 255-268

Abstract: The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation. In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21–35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results. A good agreement between the simulations and experiments was achieved, indicating a good applicability and reliability of the refined sub-models and suitability of use of the experimentally derived kinetic data in coal devolatilisation and char oxidation sub-models. The sub-models and the practices implemented in this work can be used in large-scale oxy-fuel combustion processes for reliable design and optimization.

Keywords: Computational fluid dynamics; Oxy-coal combustion; Radiative heat transfer; Char combustion (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213008104
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:62:y:2013:i:c:p:255-268

DOI: 10.1016/j.energy.2013.08.063

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:255-268