EconPapers    
Economics at your fingertips  
 

Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment

Marek Brand and Svend Svendsen

Energy, 2013, vol. 62, issue C, 311-319

Abstract: Denmark is aiming for a fossil-free heating sector for buildings by 2035. Judging by the national heating plan, this will be achieved mainly by a further spread of DH (district heating) based on the renewable heat sources. To make the most cost-effective use of these sources, the DH supply temperature should be as low as possible. We used IDA–ICE software to simulate a typical Danish single-family house from the 1970s connected to DH at three different stages of envelope and space heating system refurbishment. We wanted to investigate how low the DH supply temperature can be without reducing the current high level of thermal comfort for occupants or the good efficiency of the DH network. Our results show that, for a typical single-family house from the 1970s, even a small refurbishment measure such as replacing the windows allows the reduction of the maximum DH supply temperature from 78 to 67 °C and, for 98% of the year, to below 60 °C. However for the temperatures below 60 °C a low-temperature DH substation is required for DHW (domestic hot water) heating. This research shows that renewable sources of heat can be integrated into the DH system without problems and contribute to the fossil-free heating sector already today.

Keywords: Low-temperature district heating; Existing buildings; Supply temperature curve; Domestic hot water; IDA–ICE; Renewable heat sources (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213007780
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:62:y:2013:i:c:p:311-319

DOI: 10.1016/j.energy.2013.09.027

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:311-319