Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites
Hanna Ljungstedt,
Karin Pettersson and
Simon Harvey
Energy, 2013, vol. 62, issue C, 349-361
Abstract:
This study investigates heat integrated production of FT (Fischer–Tropsch) crude, where excess heat from the FT crude plant is delivered to a typical Scandinavian pulp and paper mill that produces fine paper. The sizes of FT crude plants are quantified, when the amount of excess heat from the FT plant exactly matches the heating demand otherwise satisfied by the bark boiler at the mill, considering a number of development pathways at the mill, including various degrees of steam savings and biorefinery options, such as lignin extraction. Performance of integrated production is compared with that of an FT stand-alone plant on the basis of wood fuel-to-FT crude efficiency, GHG (greenhouse gas) emissions balances and FT crude production cost. The results show that there exists a heat integration opportunity for an FT crude plant ranging from 0 up to 350 MW (LHV) of wood fuel depending on the development pathway for the mill. The results indicate higher overall efficiency and a generally lower production cost for the heat integrated, co-located production. Heat integrated production has a larger potential to contribute to GHG emission mitigation, assuming a future generation of grid electricity emitting equal to or less than an NGCC (natural gas combined cycle) power plant.
Keywords: Process integration; Biomass-based feedstock; Gasification; Fischer–Tropsch crude; Pulp and paper mill; Greenhouse gas balance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213008098
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:62:y:2013:i:c:p:349-361
DOI: 10.1016/j.energy.2013.09.048
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().