EconPapers    
Economics at your fingertips  
 

The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace

Jeongseog Oh, Dongsoon Noh and Changbok Ko

Energy, 2013, vol. 62, issue C, 362-369

Abstract: The effects of hydrogen (H2) addition to a fuel jet on a non-premixed oxy-methane flame were experimentally investigated in a lab-scale furnace with a slot-type burner. To observe the flame behavior of a non-premixed oxy-methane jet, the flame stabilization and flame luminescence were measured. The flow velocity was varied in the range of uF = 7 ∼ 50 m/s for methane (CH4) gas and uOx = 10 ∼ 120 m/s for oxygen (O2) gas. The objective of the current study is to investigate the characteristics of the flame stabilization, flame spectra, and flame structure of a non-premixed oxy-methane flame as increasing H2 mole fraction in the fuel jet. The mole fraction of H2 gas in the fuel jet (XH2) was changed from XH2 = 0–15% over five steps. The experimental measurement showed that the flame stabilization area broadened as the hydrogen mole fraction in a fuel jet increased. In addition, the flame length of the non-premixed oxy-methane flame decreased as the hydrogen mole fraction in the fuel jet increased.

Keywords: Oxy-fuel combustion; Non-premixed flame; Slot burner; Industrial furnace; Hydrogen addition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213008141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:62:y:2013:i:c:p:362-369

DOI: 10.1016/j.energy.2013.09.049

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:362-369