Exergy accounting applied to metallurgical systems: The case of nickel processing
Adriana Domínguez,
Alicia Valero and
Antonio Valero
Energy, 2013, vol. 62, issue C, 37-45
Abstract:
Exergy accounting of energy and material flows for the two main routes of nickel production (from laterites and sulphides ores) is performed so as to identify the main losses which take place in the overall chain. Accordingly, the chemical exergy of the different raw materials and utilities involved in the production of nickel is calculated. The results show that nickel processing has higher efficiencies when it is produced from sulphides than from laterites. Sulphide ore processing has efficiencies fluctuating from 0.67 to 0.79, depending on the specific technologies utilised. The higher efficiencies are reached when leaching technologies are used and on the contrary if nickel is produced from laterites, the efficiencies achieved are lower on average (0.38) due to the cost-intensive processing. The strengths and weakness of the methodology applied are discussed and compared with the exergoecology approach. If the analysis is carried out with the exergoecology methodology, the cost effectiveness of sulphides against laterites is not so evident.
Keywords: Nickel mining; Exergy analysis; Metallurgical systems; Exergoecology (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213002867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:62:y:2013:i:c:p:37-45
DOI: 10.1016/j.energy.2013.03.089
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().