EconPapers    
Economics at your fingertips  
 

Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–Validation and CFD optimization

Seyed Ehsan Rafiee and Masoud Rahimi

Energy, 2013, vol. 63, issue C, 195-204

Abstract: Energy separation procedure of vortex tube can be improved by using convergent nozzle. In the experimental investigation, the parameters are focused on the convergence ratio of nozzle, inlet pressure and number of nozzle intakes. The effect of the convergence ratio of nozzle is investigated in the range of 1–2.85. The most objective of this investigation is the demonstration of the successful use of computational fluid dynamics (CFD) in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries, thereby providing a powerful tool that can be employed to optimize vortex tube design as well as assess its utility in the field of new applications and industries. A computational fluid dynamics model was developed to predict the performances of the vortex tube system. The numerical investigation was carried out by full three-dimensional (3D) steady state CFD simulation using FLUENT 6.3.26. This model utilizes the k–ɛ turbulence model to solve the flow equations. Experiments were also conducted to validate results obtained for the simulation. First purpose of numerical study in this case was validation with experimental data to confirm these results and the second was the optimization of experimental model to achieve the highest performance.

Keywords: Experimental study; Numerical analysis; Vortex tube; Convergent nozzle; Cryogenic capacity; Optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213008268
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:63:y:2013:i:c:p:195-204

DOI: 10.1016/j.energy.2013.09.060

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:195-204