EconPapers    
Economics at your fingertips  
 

Performance comparison of renewable incentive schemes using optimal control

Neeraj Oak, Daniel Lawson and Alan Champneys

Energy, 2014, vol. 64, issue C, 44-57

Abstract: Many governments worldwide have instituted incentive schemes for renewable electricity producers in order to meet carbon emissions targets. These schemes aim to boost investment and hence growth in renewable energy industries. This paper examines four such schemes: premium feed-in tariffs, fixed feed-in tariffs, feed-in tariffs with contract for difference and the renewable obligations scheme. A generalised mathematical model of industry growth is presented and fitted with data from the UK onshore wind industry. The model responds to subsidy from each of the four incentive schemes. A utility or ‘fitness’ function that maximises installed capacity at some fixed time in the future while minimising total cost of subsidy is postulated. Using this function, the optimal strategy for provision and timing of subsidy for each scheme is calculated. Finally, a comparison of the performance of each scheme, given that they use their optimal control strategy, is presented. This model indicates that the premium feed-in tariff and renewable obligation scheme produce the joint best results.

Keywords: Subsidy; Renewable energy; Incentive schemes; Feed-in tariff; Contract for difference; Renewable obligations (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (9) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213010001
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:64:y:2014:i:c:p:44-57

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-09-29
Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:44-57